GEOMETRY

Dr. Myrto Manolaki

myrto.manolaki@ucd.ie

School of Mathematical Sciences

University College Dublin,

30 January 2016

Standard notations for a triangle ABC :

The 3 altitudes of a triangle meet at the same point. This point is called the **orthocenter** of the triangle.

Area of a triangle $\mathbb{A}\mathbb{B}\mathbb{C}$ is given by

$$
[ABC] = \frac{BC \cdot h_a}{2} = \frac{CA \cdot h_b}{2} = \frac{AB \cdot h_c}{2}
$$

$$
[ABC] = \frac{AB \cdot AC \cdot \sin \angle BAC}{2}
$$

Proposition. The median of a triangle divides it into two triangles of the same area.

Proof. Indeed, if M is the midpoint of BC then

**

The 3 medians of a triangle meet at the same point. This point is called the **centroid** of the triangle.

Problem 1. Let G be the centroid of a triangle $[ABC]$ (that is, the point of intersection of all its three medians). Then

$$
[GAB] = [GBC] = [GCA].
$$

Problem 1. Let G be the centroid of a triangle $[ABC]$ (that is, the point of intersection of all its three medians). Then

$$
[GAB] = [GBC] = [GCA].
$$

Solution. Let M, N, P be the midpoints of BC , CA and AB respectively. Denote

$$
[GMB] = x, \quad [GNA] = y, \quad [GPB] = z.
$$

Problem 1. Let G be the centroid of a triangle $[ABC]$ (that is, the point of intersection of all its three medians). Then

$$
[GAB] = [GBC] = [GCA].
$$

Solution. Let M, N, P be the midpoints of BC , CA and AB respectively. Denote

$$
[GMB] = x, \quad [GNA] = y, \quad [GPB] = z.
$$

Note that GM is median in triangle GBC so

$$
[GMC] = [GMB] = x.
$$

Similarly $[GNC] = [GNA] = y$ and $[GPA] = [GPB] = z$. Now $[ABM] = [ACM]$ implies $2z + x = 2y + x$ so $z = y$. From $[BNC] = [BNA]$ we obtain $x = z$, so $x = y = z$

Problem 2. Let M be a point inside a triangle ABC such that

$$
[MAB] = [MBC] = [MCA].
$$

Prove that M is the centroid of the triangle ABC .

Problem 2. Let M be a point inside a triangle ABC such that

$$
[MAB] = [MBC] = [MCA].
$$

Prove that M is the centroid of the triangle ABC .

Solution. Let G be the centroid of the triangle.

Then (by Problem 1):

$$
[GAB] = [GBC] = [GCA] = \frac{[ABC]}{3}.
$$

We will show that $M = G$.

 \bullet In order to have $[MBC]=\frac{[ABC]}{2}$ 3 $=[GBC]$, we must have that M belongs to the unique parallel line to BC passing from G.

- \bullet In order to have $[MBC]=\frac{[ABC]}{2}$ 3 $=[GBC]$, we must have that M belongs to the unique parallel line to BC passing from G.
- \bullet In order to have $[MAB]=\frac{[ABC]}{2}$ 3 $=[GAB]$, we must have that M belongs to the unique parallel line to AB passing from G .
- Hence M belongs in the intersection of these 2 lines, which is the point G. Hence $M = G$.

Let ABC and $A'B'C'$ be two similar triangles, that is,

 $A'B'$ $\frac{AB}{AB} =$ $C'A'$ $\frac{1}{CA} =$ $B'C'$ $\frac{B}{BC}$ = ratio of similarity

Then

$$
\frac{[A'B'C']}{[ABC]} = \left(\frac{A'B'}{AB}\right)^2 = \left(\frac{C'A'}{CA}\right)^2 = \left(\frac{B'C'}{BC}\right)^2.
$$

Proposition. The ratio of areas of two similar triangles equals the square of ratio of similarity.

Example. Consider the median triangle $A'B'C'$ of a triangle ABC $(A', B'$ and C' are the midpoints of the sides of triangle ABC). Then:

- \bullet $A'B'$ parallel to AB and equal to $\frac{AB}{2}$
- \bullet $A'C'$ parallel to AC and equal to $\frac{AC}{2}$
- \bullet $B'C'$ parallel to BC and equal to $\frac{BC}{2}$

The similarity ratio is

$$
\frac{A'B'}{AB} = \frac{A'C'}{AC} = \frac{B'C'}{BC} = \frac{1}{2}
$$

so

$$
\frac{[A'B'C']}{[ABC]} = \left(\frac{A'B'}{AB}\right)^2 = \frac{1}{4}
$$
 that is, $[A'B'C'] = \frac{1}{4}[ABC].$

Problem 3. Let $A'B'C'$ be the median triangle of ABC and denote by H_1 , H_2 and H_3 the orthocenters of triangles $CA'B',$ $AB'C'$ and $BC'A'$ respectively.

Prove that:

(i) $[A'H_1B'H_2C'H_3] = \frac{1}{2}[ABC].$

(ii) If we extend the line segments AH_2 , BH_3 and CH_1 , then they will all 3 meet at a point.

Problem 3. Let $A'B'C'$ be the median triangle of ABC and denote by H_1 , H_2 and H_3 the orthocenters of triangles $CA'B',$ $AB'C'$ and $BC'A'$ respectively.

Prove that:

(i) $[A'H_1B'H_2C'H_3] = \frac{1}{2}[ABC].$

(ii) If we extend the line segments AH_2 , BH_3 and CH_1 , then they will all 3 meet at a point.

Solution.

(i) First remark that $A'B'C'$ and ABC are similar triangles with the similarity ratio $B^{\prime}C^{\prime}$: $BC=1:2.$ Therefore

$$
[A'B'C'] = \frac{1}{4}[ABC].
$$

Let H be the orthocenter of ABC . Then A, H_2 and H are on the same line. Also triangles $H_2C^{\prime}B^{\prime}$ and HBC are similar with the same similarity ratio, thus

$$
[H_2B'C'] = \frac{1}{4}[HBC].
$$

In the same way we obtain

$$
[H_1A'B'] = \frac{1}{4}[HAB] \quad \text{and} \quad [H_3C'A'] = \frac{1}{4}[HCA].
$$

We now obtain

$$
[A'H_1B'H_2C'H_3] = [A'B'C'] + [H_1A'B'] + [H_2B'C'] + [H_3C'A']
$$

= $\frac{1}{4}[ABC] + \frac{[HAB] + [HBC] + [HCA]}{4}$
= $\frac{1}{4}[ABC] + \frac{1}{4}[ABC] = \frac{1}{2}[ABC].$

(*This is a different solution from the one given in class)

(ii)Remark that the extensions of AH_2 , BH_3 and CH_1 are the altitudes of the triangle ABC . Hence they all meet at a point (namely the orthocenter of ABC).

Problem 4. Let Q be a point inside a triangle ABC . Three lines pass through Q and are parallel with the sides of the triangle. These lines divide the initial triangle into six parts, three of which are triangles of areas S_1 , S_2 and S_3 . Prove that

$$
\sqrt{[ABC]} = \sqrt{S_1} + \sqrt{S_2} + \sqrt{S_3}.
$$

Solution.

Let D, E, F, G, H, I be the points of intersection between the three lines and the sides of the triangle.

Then triangles DGQ , HQF , QIE and ABC are similar so

$$
\frac{S_1}{[ABC]} = \left(\frac{GQ}{BC}\right)^2 = \left(\frac{BI}{BC}\right)^2
$$

Similarly

$$
\frac{S_2}{[ABC]} = \left(\frac{IE}{BC}\right)^2, \quad \frac{S_3}{[ABC]} = \left(\frac{QF}{BC}\right)^2 = \left(\frac{CE}{BC}\right)^2
$$

.

Then

$$
\sqrt{\frac{S_1}{[ABC]}} + \sqrt{\frac{S_2}{[ABC]}} + \sqrt{\frac{S_3}{[ABC]}} = \frac{BI}{BC} + \frac{IE}{BC} + \frac{EC}{BC} = 1.
$$

This yields

$$
\sqrt{[ABC]} = \sqrt{S_1} + \sqrt{S_2} + \sqrt{S_3}.
$$

Problem 5. Let *ABC* be a triangle. On the line BC, beyond the point C we take the point A' such that $BC=CA'$. On the line CA beyond the point A we take the point B' such that $AC = AB'.$ On the line AB , beyond the point B we take the point C^{\prime} such that $AB = BC'$. Prove that

$$
[A'B'C'] = 7[ABC].
$$

Solution. We bring the lines AA' , BB' , CC' so that we split the big triangle $A^{\prime}B^{\prime}C^{\prime}$ into 7 triangles. We will show that all 7 triangles have area equal to $[ABC]$.

- \bullet $[B'BA]$ = $[ABC]$ (since AB is a median of the triangle CBB').
- \bullet $[B'BC'] = [B'BA] = [ABC]$ (since BB' is a median of the triangle $C'AB'$).
- $[A'CA] = [ABC]$ (since AC is a median of the triangle $A'AB$).
- \bullet $[A'AB'] = [A'CA] = [ABC]$ (since AA' is a median of the triangle $A'B'C$).
- \bullet $[CBC']$ = $[ABC]$ (since CB is a median of the triangle CAC^{\prime}).
- \bullet $[CC' A'] = [CBC'] = [ABC]$ (since CC' is a median of the triangle $BA'C'$).

Homework

6. Let $ABCD$ be a quadrilateral. On the line AB , beyond the point B we take the point A' such that $AB = BA'$. On the line BC beyond the point C we take the point B' such that $BC = CB'.$ On the line $C\bar{D}$ beyond the point \bar{D} we take the point C' such that $CD = DC'$. On the line DA beyond the point A we take the point D' such that $DA = AD'$. Prove that

$$
[A'B'C'D'] = 5[ABCD].
$$

7. Let G be the centroid of triangle ABC . Denote by G_1 , G_2 and G_3 the centroids of triangles ABG , BCG and CAG . Prove that

$$
[G_1 G_2 G_3] = \frac{1}{9} [ABC].
$$

Hint: Let T be the midpoint of AG. Then G_1 belongs to the line BT and divides it in the ration 2:1. Similarly G_3 belongs to the line CT and divides it in the ratio 2:1. Deduce that G_1G_3 is parallel to BC and $G_1G_3 = \frac{1}{3}BC.$ Using this argument, deduce that triangles $G_1G_2G_3$ and ABC are similar with ratio of similarity of $1/3$.

8. Let A' , B' and C' be the midpoints of the sides BC , CA and AB of triangle ABC . Denote by G_1 , G_2 and G_3 the centroids of triangles $\mathit{AB'C'}$, $\mathit{BA'C'}$ and $\mathit{CA'B'}$. Prove that

$$
[A'G_2B'G_1C'G_3] = \frac{1}{2}[ABC].
$$

9. Let $ABCD$ be a convex quadrilateral. On the line AC we take the point C_1 such that $CA = CC_1$ and on the line BD we take the point D_1 such that $BD = DD_1$. Prove

$$
[ABC_1D_1] = 4[ABCD].
$$

10. Let M be a point inside a triangle ABC whose altitudes are h_a, h_b and $h_c.$ Denote by $d_a, \ d_b$ and d_c the distances from M to the sides BC , CA and AB respectively. Prove that

$$
\min\{h_a, h_b, h_c\} \le d_a + d_b + d_c \le \max\{h_a, h_b, h_c\}.
$$